Home » » What is Neural Style Transfer?

What is Neural Style Transfer?

What is Neural Style Transfer?

Neural Style Transfer (NST) is a technique that uses deep neural networks to transfer the style of one image, such as a painting, to another image, such as a photograph. The style of an image refers to its color, texture, brush strokes, and other artistic elements. The content of an image refers to its objects, shapes, and features. NST aims to create a new image that preserves the content of the original image, but adopts the style of another image.

How does Neural Style Transfer work?

NST is based on the idea that deep neural networks can learn to extract and represent the content and style of an image. A deep neural network is a computational model that consists of multiple layers of artificial neurons that can process complex data. Each layer transforms the input data into a higher-level representation, capturing different aspects of the data.

One type of deep neural network that is widely used for image processing is called a convolutional neural network (CNN). A CNN consists of multiple layers of convolutional filters that apply mathematical operations to the input image, producing feature maps that encode different information about the image. For example, the lower layers of a CNN may capture edges, colors, and textures, while the higher layers may capture objects, scenes, and faces.

NST uses a pretrained CNN that has been trained on a large dataset of images, such as ImageNet1, to extract the content and style features from the input images. A pretrained CNN is a CNN that has already learned to recognize various objects and categories in images, and can be reused for other tasks without requiring additional training.

The most common CNN used for NST is called VGG-192, which consists of 19 layers of convolutional filters and was trained on over 14 million images. The VGG-19 network can be divided into five blocks, each containing several convolutional layers followed by a max-pooling layer that reduces the size of the feature maps.

To extract the content features from an image, NST uses one of the higher layers of the CNN, such as the fourth block (conv4_2). This layer contains information about the objects and shapes in the image, while discarding lower-level details such as colors and textures. The content features are represented by the values of the feature maps in this layer.

To extract the style features from an image, NST uses multiple layers of the CNN, ranging from lower to higher levels. Each layer captures different aspects of the style, such as colors, textures, patterns, and brush strokes. The style features are represented by the correlations between the values of the feature maps in each layer. These correlations are computed by a mathematical operation called Gram matrix3, which measures how similar or different the feature maps are.

How does Neural Style Transfer create a new image?

NST creates a new image by optimizing an initial random image to minimize two loss functions: a content loss and a style loss. The content loss measures how different the content features of the new image are from those of the content image. The style loss measures how different the style features of the new image are from those of the style image. The optimization process uses a gradient descent algorithm that iteratively updates the pixel values of the new image until it minimizes both losses.

The optimization process can be summarized by the following steps:

  1. Load the content image, the style image, and the pretrained CNN.
  2. Initialize the new image with random pixel values or with the content image.
  3. Extract the content features from the content image and the new image using one layer of the CNN (e.g., conv4_2).
  4. Extract the style features from the style image and the new image using multiple layers of the CNN (e.g., conv1_1, conv2_1, conv3_1, conv4_1, conv5_1).
  5. Compute the content loss as the mean squared error between the content features of the content image and those of the new image.
  6. Compute the style loss as the weighted sum of mean squared errors between the Gram matrices of the style features of the style image and those of the new image for each layer.
  7. Compute the total loss as a linear combination of the content loss and the style loss, with hyperparameters that control the relative importance of each loss.
  8. Compute the gradients of the total loss with respect to the pixel values of the new image.
  9. Update the pixel values of the new image by subtracting a fraction of the gradients.
  10. Repeat steps 3 to 9 until the total loss converges or a maximum number of iterations is reached.

What are the applications and challenges of Neural Style Transfer?

NST has many applications in the fields of art, design, entertainment, and education. For example, NST can be used to create artistic filters for photos and videos, to generate novel artworks and animations, to enhance the aesthetics and mood of images, to visualize data and concepts in different styles, and to teach and learn about art history and techniques.

However, NST also faces some challenges and limitations. For example, NST may not preserve the semantic meaning and realism of the content image, resulting in distorted or unnatural outputs. NST may also not capture the style of complex or abstract paintings, such as cubism or expressionism, that require higher-level understanding of the artistic intent and context. Moreover, NST may be computationally expensive and time-consuming, especially for high-resolution images or videos.

Therefore, NST is an active area of research that aims to improve the quality, diversity, efficiency, and creativity of the technique. Some of the recent advances in NST include:

  • Fast style transfer, which uses a feed-forward network to generate the stylized image directly, without requiring an optimization process.
  • Arbitrary style transfer, which allows the user to choose any style image, without requiring a separate network for each style.
  • Neural doodle, which uses semantic masks to guide the style transfer process and preserve the structure of the content image.
  • Neural patches, which uses local patches of the style image to transfer more details and textures to the new image.
  • Style-aware content loss, which adapts the content loss to the style image, resulting in more harmonious and realistic outputs.

References

1: ImageNet: A large-scale hierarchical image database. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li and Li Fei-Fei. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.

2: Very Deep Convolutional Networks for Large-Scale Image Recognition. Karen Simonyan and Andrew Zisserman. International Conference on Learning Representations (ICLR), 2015.

3: A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker and Matthias Bethge. arXiv:1508.06576 [cs.CV], 2015.

: An Introduction to Gradient Descent and Linear Regression. Matt Nedrich. https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression/

: Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Justin Johnson, Alexandre Alahi and Li Fei-Fei. European Conference on Computer Vision (ECCV), 2016.

: Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. Xun Huang and Serge Belongie. IEEE International Conference on Computer Vision (ICCV), 2017.

: Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks. Alex J. Champandard. arXiv:1603.01768 [cs.CV], 2016.

: Neural Patches: Analyzing and Synthesizing Texture Patches with Convolutional Neural Networks. Leon A. Gatys, Alexander S. Ecker and Matthias Bethge. arXiv:1601.05030 [cs.CV], 2016.

: Style-Aware Content Loss for Real-Time HD Style Transfer. Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang and Björn Ommer. European Conference on Computer Vision (ECCV), 2018.

0 মন্তব্য(গুলি):

একটি মন্তব্য পোস্ট করুন

Comment below if you have any questions

অফিস/বেসিক কম্পিউটার কোর্স

এম.এস. ওয়ার্ড
এম.এস. এক্সেল
এম.এস. পাওয়ার পয়েন্ট
বাংলা টাইপিং, ইংরেজি টাইপিং
ই-মেইল ও ইন্টারনেট

মেয়াদ: ২ মাস (সপ্তাহে ৪দিন)
রবি+সোম+মঙ্গল+বুধবার

কোর্স ফি: ৪,০০০/-

গ্রাফিক ডিজাইন কোর্স

এডোব ফটোশপ
এডোব ইলাস্ট্রেটর

মেয়াদ: ৩ মাস (সপ্তাহে ২দিন)
শুক্র+শনিবার

কোর্স ফি: ৮,৫০০/-

ওয়েব ডিজাইন কোর্স

এইচটিএমএল ৫
সিএসএস ৩

মেয়াদ: ৩ মাস (সপ্তাহে ২দিন)
শুক্র+শনিবার

কোর্স ফি: ৮,৫০০/-

ভিডিও এডিটিং কোর্স

এডোব প্রিমিয়ার প্রো

মেয়াদ: ৩ মাস (সপ্তাহে ২দিন)
শুক্র+শনিবার

কোর্স ফি: ৯,৫০০/-

ডিজিটাল মার্কেটিং কোর্স

ফেসবুক, ইউটিউব, ইনস্টাগ্রাম, এসইও, গুগল এডস, ইমেইল মার্কেটিং

মেয়াদ: ৩ মাস (সপ্তাহে ২দিন)
শুক্র+শনিবার

কোর্স ফি: ১২,৫০০/-

অ্যাডভান্সড এক্সেল

ভি-লুকআপ, এইচ-লুকআপ, অ্যাডভান্সড ফাংশনসহ অনেক কিছু...

মেয়াদ: ২ মাস (সপ্তাহে ২দিন)
শুক্র+শনিবার

কোর্স ফি: ৬,৫০০/-

ক্লাস টাইম

সকাল থেকে দুপুর

১ম ব্যাচ: সকাল ০৮:০০-০৯:৩০

২য় ব্যাচ: সকাল ০৯:৩০-১১:০০

৩য় ব্যাচ: সকাল ১১:০০-১২:৩০

৪র্থ ব্যাচ: দুপুর ১২:৩০-০২:০০

বিকাল থেকে রাত

৫ম ব্যাচ: বিকাল ০৪:০০-০৫:৩০

৬ষ্ঠ ব্যাচ: বিকাল ০৫:৩০-০৭:০০

৭ম ব্যাচ: সন্ধ্যা ০৭:০০-০৮:৩০

৮ম ব্যাচ: রাত ০৮:৩০-১০:০০

যোগাযোগ:

আলআমিন কম্পিউটার প্রশিক্ষণ কেন্দ্র

৭৯৬, পশ্চিম কাজীপাড়া বাসস্ট্যান্ড,

[মেট্রোরেলের ২৮৮ নং পিলারের পশ্চিম পাশে]

কাজীপাড়া, মিরপুর, ঢাকা-১২১৬

মোবাইল: 01785 474 006

ইমেইল: alamincomputer1216@gmail.com

ফেসবুক: facebook.com/ac01785474006

ব্লগ: alamincomputertc.blogspot.com

Contact form

নাম

ইমেল *

বার্তা *